Research: LEMAY-NEDJELSKI and COLLEAGUES,

Listed in Issue 295

Abstract

LEMAY-NEDJELSKI and COLLEAGUES, 1 Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada. l.lemay@mail.utoronto.ca ; 2 Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada. julie.mason@mail.utoronto.ca  ; 3 Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada. amel.taibi@utoronto.ca ; 4 Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada. elena.comelli@utoronto.ca 5 Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada. elena.comelli@utoronto.ca ; 6 Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada. lilian.thompson@utoronto.ca  studied the effects of Omega-3 Polyunsaturated Fatty Acids upon cell viability and expression of microRNA (miRNA), in Oestrogen Receptor-Positive Breast Cancer Cells.

 

Background

The omega-3 polyunsaturated fatty acid (n-3 PUFA), α-linolenic acid (ALA), and its metabolites, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), independently reduce the growth of breast cancer cells in vitro, but the mechanisms, which may involve microRNA (miRNA), are still unclear.

Methodology

METHODOLOGY: The expression of the oncomiR, miR-21, is reduced by DHA treatment, but the effects of ALA on miR-21, alone or combined with EPA and DHA under physiologically relevant concentrations, have not been investigated. The effects of ALA alone and +/-EPA and DHA at the blood molar ratios seen in either humans (1.0:1.0:2.5, ALA:EPA:DHA) or mice (1.0:0.4:3.1, ALA:EPA:DHA) post flaxseed oil consumption (containing ALA) were assessed in vitro in MCF-7 breast cancer cells.

Results

Cell viability and the expression of miR-21 and its molecular target, phosphatase and tension homolog (PTEN, gene and protein), at different time points, were examined. At 1, 3, 48 and 96 h ALA alone and 24 h animal ratio treatments significantly reduced MCF-7 cell viability, while 1 and 3 h ALA alone and human and animal ratio treatments all significantly reduced miR-21 expression, and 24 h animal ratio treatment reduced miR-21 expression; these effects were not associated with changes in PTEN gene or protein expressions.

Conclusion

We showed for the first time that ALA alone or combined with EPA and DHA at levels seen in human and animal blood post-ALA consumption can significantly reduce cell viability and modulate miR-21 expression in a time- and concentration-dependent manner, with the animal ratio containing higher DHA having a greater effect. The time dependency of miR-21 effects suggests the significance of considering time as a variable in miRNA studies, particularly of miR-21.

References

Lauren LeMay-Nedjelski  1 , Julie K Mason-Ennis  2 , Amel Taibi  3 , Elena M Comelli  4   5 , Lilian U Thompson  6. Omega-3 Polyunsaturated Fatty Acids Time-Dependently Reduce Cell Viability and Oncogenic MicroRNA-21 Expression in Estrogen Receptor-Positive Breast Cancer Cells (MCF-7) Int J Mol Sci.;  19(1):244. doi: 10.3390/ijms19010244. Jan 14 2018.

ICAN 2024 Skyscraper

Scientific and Medical Network 2

Cycle Around the World for Charity 2023

Climb Mount Kilimanjaro Charity 2023

top of the page