Research: KIM and COLLEAGUES,

Listed in Issue 274

Abstract

KIM and COLLEAGUES, 1. Department of Sports Science, College of Natural Science, Chonbuk National University; 2. Department of Leisure Sport, Kyungpook National University, Japan analyzed whether antioxidant supplementation inhibits skeletal muscle mitochondrial biogenesis as an adaption to endurance training.

Background

The objective of the present study was to analyze the activation and expression patterns of upstream and downstream factors of PGC-1α to determine whether antioxidant (AO) supplementation inhibits mitochondrial biogenesis in skeletal muscles as an adaptation to endurance training, as well as to analyze changes in endurance capacity based on such findings.

Methodology

For this objective, 24 male Sprague-Dawley (SD) rats were allocated into 4 groups (vehicle-sedentary, V-Sed; vehicle-exercise, V-EX; antioxidant-sedentary, AO-Sed; antioxidant-exercise, AO-EX) of 6 rats each. The rats were then treated with vitamin C (500 mgkg-1 body weightd-1) or a placebo for 8 wk, and a swimming program was implemented in some rats during the last 4 wk of this period. Immediately after the last training session, blood was collected from the tail of each rat, and TBARS was measured to test the effect of vitamin C as an AO.

Results

As a result, increased oxidative stress from exercise was inhibited by vitamin C supplementation. Analysis of whether reduced oxidative stress by vitamin C supplementation also inhibited mitochondrial biogenesis within skeletal muscles showed that phosphorylation of p38 MAPK and AMPK, along with levels of PGC-1α, NRF-1, mtTFA, and mitochondrial electron transport enzymes, increased after endurance training in spite of vitamin C supplementation. Moreover, running time, distance, and total work increased significantly in the exercise group as compared to those in the sedentary group, regardless of vitamin C supplementation.

Conclusion

These results indicate that mitochondrial biogenesis and endurance capacity increase as a result of endurance training, regardless of AO supplementation.

References

Kim JC1, Park GD2, Kim SH1. Inhibition of Oxidative Stress by Antioxidant Supplementation Does Not Limit Muscle Mitochondrial Biogenesis or Endurance Capacity in Rats. J Nutr Sci Vitaminol (Tokyo).;63(5):277-283. doi: 10.3177/jnsv.63.277. 2017.

ICAN 2024 Skyscraper

Scientific and Medical Network 2

Cycle Around the World for Charity 2023

Climb Mount Kilimanjaro Charity 2023

top of the page